Biomarkers for HFpEF

16th Annual Biomarkers and Personalized Medicine in Cardiology, San Diego (virtual)
Session II: Biomarkers in Heart Failure

Rudolf A. de Boer, MD, FESC
University Medical Center Groningen - Groningen, the Netherlands

Disclosures: The UMCG has received research grants and/or fees from AstraZeneca, Abbott, Bristol-Myers Squibb, Novartis, Novo Nordisk, and Roche. Dr. de Boer received speaker fees from Abbott, AstraZeneca, Bayer, Novartis, and Roche.
I wish I could have traveled to SD
Content

• Biomarkers for diagnosis
• Biomarkers for prognosis
• Biomarkers to understand the disease
• Biomarkers to guide treatment
ESC 2016 Key Diagnostic HFpEF Criteria

“Preserved” EF: \(\geq 50\% \)

Structural alterations:
- LAVI \(>34 \text{ ml/m}^2 \) or LVMI \(\geq 115 \text{ (males)}/\geq 95 \text{ (females) mg/m}^2 \)

Functional alterations:
- E/é \(\geq 13 \)
- é (mean septal and lateral) \(<9 \text{ cm/s} \)

NT-proBNP:
- \(>125 \text{ pg/ml or (SR; increase with AF!)} \)

BNP:
- \(>35 \text{ pg/ml} \)
Prediction of New Onset Heart Failure

Predicting Heart Failure With Preserved and Reduced Ejection Fraction
The International Collaboration on Heart Failure Subtypes

Jennifer E. Ho, MD*; Danielle Enserro, MA*; Frank P. Brouwers, MD, PhD*;
Jorge R. Kizer, MD*; Sanjiv J. Shah, MD; Bruce M. Psaty, MD, PhD, MPH;
Traci M. Bartz, MS; Rajalakshmi Santhanakrishnan, MBBS; Douglas S. Lee, MD, PhD;
Cheeling Chan, MS; Kiang Liu, PhD; Michael J. Blaha, MD, MPH; Hans L. Hilleges, MD, PhD;
Pim van der Harst, MD, PhD; Wiek H. van Gilst, MD, PhD; Willem J. Kop, PhD;
Ron T. Gansevoort, MD, PhD; Ramachandran S. Vasan, MD; Julius M. Gardin, MD, MBA;
Daniel Levy, MD, John S. Gottlieber, MD*; Rudolf A. de Boer, MD, PhD*;
Martin G. Larson, ScD*

- 28,820 healthy subjects, > 10 years FU
- 982 new onset HFpEF
- 909 new onset HFrEF

Ho, JE et al. Circ Heart Fail. 2016; 9:e003116
Predicting Heart Failure With Preserved and Reduced Ejection Fraction

The International Collaboration on Heart Failure Subtypes

Jennifer E. Ho, MD*; Danielle Enserro, MA*; Frank P. Brouwers, MD, PhD*; Jorge R. Kizer, MD*; Sanjiv J. Shah, MD; Bruce M. Psaty, MD, PhD, MPH; Traci M. Bartz, MS; Rajalakshmi Santhanakrishnan, MBBS; Douglas S. Lee, MD, PhD; Cheeling Chan, MS; Kiang Liu, PhD; Michael J. Blaha, MD, MPH; Hans L. Hilleges, MD, PhD; Pim van der Harst, MD, PhD; Wiek H. van Gilst, MD, PhD; Willem J. Kop, PhD; Ron T. Gansevoort, MD, PhD; Ramachandran S. Vasan, MD; Julius M. Gardin, MD, MBA; Daniel Levy, MD; John S. Gottliener, MD*; Rudolf A. de Boer, MD, PhD*; Martin G. Larson, ScD*

<table>
<thead>
<tr>
<th>HFpEF</th>
<th>sHR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, per 10 y</td>
<td>1.90 (1.74–2.07)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male sex</td>
<td>0.93 (0.78–1.11)</td>
<td>0.43</td>
</tr>
<tr>
<td>Systolic BP, per 20 mm Hg</td>
<td>1.14 (1.05–1.24)</td>
<td>0.003</td>
</tr>
<tr>
<td>Body mass index, per 4 kg/m²</td>
<td>1.28 (1.21–1.37)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Antihypertensive treatment</td>
<td>1.42 (1.18–1.71)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>1.48 (1.12–1.96)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Ho, JE et al. Circ Heart Fail. 2016; 9:e003116
Association of Cardiovascular Heart Failure With Preserved Ejection Fraction (HFpEF) and Heart Failure With Reduced Ejection Fraction (HFrEF) in Multivariable-Adjusted Analyses

de Boer, RA et al. *JAMA Cardiol.* 2018: 3:215-224
CENTRAL ILLUSTRATION Associations of Cardiovascular Biomarkers With Incident Heart Failure: Men Versus Women

Subdistribution Hazard Ratio (sHR) per Standard Deviation Change in Natural Log-Transformed Biomarker

Interim conclusion

- Predicting HFpEF is not as easy as HFrEF
- **Natriuretic peptides** are the best biomarkers
- hs-Tn are reasonable
- Interesting signals for UACR and PAI-1
How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

*EACVI Representatives

The HFA-PEFF Algorithm for the Diagnosis of HFpEF

P
Initial Workup (Step 1 (P) : Pretest Assessment)
- Symptoms and/or Signs of HF
- Comorbidities / Risk factors
- ECG
- Standard Echocardiography
- Natriuretic Peptides
- Ergometry / 6 min walking test or Cardiopulmonary Exercise Testing

E
Diagnostic Workup (Step 2 (E) : Echocardiographic and Natriuretic Peptide Score)
- Comprehensive Echocardiography
- Natriuretic Peptides, if not measured in Step 1

F1
Advanced Workup (Step 3 (F1) : Functional testing in Case of Uncertainty)
- Diastolic Stress Test: Exercise Stress Echocardiography
- Invasive Haemodynamic Measurements

F2
Aetiological Workup (Step 4 (F2) : Final Aetiology)
- Cardiovascular Magnetic Resonance
- Cardiac or Non-Cardiac Biopsies
- Scintigraphy / CT / PET
- Genetic testing
- Specific Laboratory Tests

The HF-PEFF SCORE

Step E: Sophisticated echo, Cardiologist

<table>
<thead>
<tr>
<th>Major Criteria: 2 points</th>
<th>Minor Criteria: 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 5 points; HFpEF</td>
<td>2-4 points: Diastolic Stress Test or Invasive Haemodynamic Measurements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional</th>
<th>Morphological</th>
<th>Biomarker (SR)</th>
<th>Biomarker (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>septal e' < 7 cm/s or lateral e' < 10 cm/s or Average E/e' > 15 or TR velocity > 2.8 m/s (PASP > 35 mmHg)</td>
<td>LAVI > 34 ml/m² or LVMI ≥ 149/122 g/m² (m/w) and RWT > 0.42 #</td>
<td>NT-proBNP > 220 pg/ml or BNP > 80 pg/ml</td>
<td>NT-proBNP > 660 pg/ml or BNP > 240 pg/ml</td>
</tr>
<tr>
<td>Average E/e' 9 -14 or GLS < 16 %</td>
<td>LAVI 29-34 ml/m² or LVMI > 115/95 g/m² (m/w) or RWT > 0.42 or LV wall thickness > 12 mm</td>
<td>NT-proBNP 125-220 pg/ml or BNP 35-80 pg/ml</td>
<td>NT-proBNP 365-660 pg/ml or BNP 105-240 pg/ml</td>
</tr>
</tbody>
</table>

A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With Preserved Ejection Fraction

<table>
<thead>
<tr>
<th>Clinical Variable</th>
<th>Values</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>H<sub>2</sub> Heavy</td>
<td>Body mass index > 30 kg/m<sup>2</sup></td>
<td>2</td>
</tr>
<tr>
<td>H<sub>2</sub> Hypertensive</td>
<td>2 or more antihypertensive medicines</td>
<td>1</td>
</tr>
<tr>
<td>F Atrial Fibrillation</td>
<td>Paroxysmal or Persistent</td>
<td>3</td>
</tr>
<tr>
<td>P Pulmonary Hypertension</td>
<td>Doppler Echocardiographic estimated Pulmonary Artery Systolic Pressure > 35 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>E Elder</td>
<td>Age > 60 years</td>
<td>1</td>
</tr>
<tr>
<td>F Filling Pressure</td>
<td>Doppler Echocardiographic E/e' > 9</td>
<td>1</td>
</tr>
</tbody>
</table>

H₂FPEF score

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Probability of HFPoEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Dyspneic Patient
LVEF ≥ 50%

HFA-PEEF Algorithm

Algorithm: “Not HFP EF”
- Rule out
- Intermediate
- Rule out

Algorithm: “Confirmed HFP EF”
- Rule in
- Intermediate
- Rule in

Invasive Stress Test

HFP EF inv
n=12/47

HFP EF inv
n=40/63

Algorithm Criteria:
PWP ≥ 15 or ePWP ≥ 25 mmHg

HFP EF inv
n=14/50

HFP EF inv
n=57/95

HFP EF inv
n=10/11

“Rule Out” (0-1)
Intermediate Risk (2-5)
“High Confidence” (6-9)

H2FPEEF Score

% HFP EF

Exercise Hemodynamics

Peak VO₂

Peak Exercise Heart Rate

Exercise PCWP

Peak VO₂

Peak Exercise Heart Rate

Exercise PCWP

Interaction – Sex – Obesity – NT-proBNP

- NT-proBNP levels are higher in women than in men
- NT-proBNP levels are lower in obese subjects
- Men are on an average heavier than women
Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population

Navin Suthahar¹, Wouter C. Meijers¹, Jennifer E. Ho², Ron T. Gansevoort³, Adriaan A. Voors¹, Peter van der Meer¹, Stephan J.L. Bakker³, Stephane Heymans⁴, Vanessa van Empel⁴, Blanche Schroen⁵, Pim van der Harst¹, Dirk J. van Veldhuisen¹, and Rudolf A. de Boer¹*
Biomarkers to predict outcomes in HFpEF
Galectin-3 particularly useful in patients with HF with preserved ejection fraction (HFPEF) a substudy of the COACH trial

Galectin-3 has independent prognostic value for death and rehospitalization

Increase Gal-3 level: stronger incremental risk for experiencing primary outcome in patients with HFPEF compared to HFREF, although absolute Gal-3 level did not differ between these patients

Biomarkers to dissect HFpEF
Find the Etiology in HFpEF

<table>
<thead>
<tr>
<th>WCNA Protein Cluster</th>
<th>Number of proteins</th>
<th>Main hub</th>
<th>Exemplar proteins</th>
<th>Primary overrepresented pathway</th>
<th>Number of upregulated inflammation pathways</th>
<th>Conserved in the validation cohort (Cluster color; number of overlapping proteins; P-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turquoise</td>
<td>N=53</td>
<td>TNFR1</td>
<td>LTBR, UPAR, PLC, GDF15</td>
<td>Leukocyte degranulation</td>
<td>7</td>
<td>Turquoise (43/53, P<0.001) Orange (17/53, P=0.01)</td>
</tr>
<tr>
<td>Yellow</td>
<td>N=13</td>
<td>IGFBP7</td>
<td>IL1RT1, Notch3, ALCAM, MMP2</td>
<td>Adherens junction organization</td>
<td>5</td>
<td>Turquoise (10/13, P=0.04)</td>
</tr>
<tr>
<td>Red</td>
<td>N=43</td>
<td>TRAILR2</td>
<td>PLGF, SPON2, ADM, IL16</td>
<td>Response to cAMP</td>
<td>4</td>
<td>Turquoise (29/43, P<0.001)</td>
</tr>
<tr>
<td>Blue</td>
<td>N=45</td>
<td>STAMPB</td>
<td>ANG, GP6, PDGFA, VWF</td>
<td>Platelet activation</td>
<td>none</td>
<td>Blue (19/45, P<0.001) Purple (13/45, P<0.001)</td>
</tr>
</tbody>
</table>

Novel heart failure biomarkers: why do we fail to exploit their potential?

Arnold Piek, Weijie Du, Rudolf A. de Boer & Herman H. W. Silljé

Circulating biomarker plasma levels

- Cardiac strain
 - Natriuretic peptides
- Cardiomyocyte injury
 - Replacement fibrosis
 - HsTn/ H-FABP
- Fibrosis
 - Gs13 / sST2 / HE4
- Inflammation
 - IL-6 / GDF-15 / PCT / ADM
- Endothelial dysfunction
 - CD146
- Metabolic dysfunction
 - Metabolic profile / IGFBP-7 / 5-oxoprolinease

Heart

Other organs & tissues

Conclusions

• HFpEF prediction is difficult, and biomarkers help!
• HFpEF prognostication is not so difficult, and biomarkers help (albeit a little)
• HFpEF pathophysiology is complex, and biomarkers help to do split the disease apart (and may guide Tx)
Acknowledgements & Collaborations

Medical Genetics
Jan Jongbloed
Irene van Langen
Yvonne Hoedemaekens

University of Wageningen, the Netherlands
Henk A. Schols

Free University of Amsterdam, the Netherlands
Jolanda van der Velden
Bianca J. Brundel

University of Utrecht, the Netherlands
Frans Rutte
Pieter Doevendans

University of Michigan, USA
Bertram Pitt

Boxford, MA, USA
Pieter Muntendam

University of California, San Diego, USA
Alan S. Maisel

Potential Conflicts of interest:
Speaker/consultancy fees: Abbott, AstraZeneca, Novartis, Roche
Research grants: ERC CoG 2018, NWO-VIDI, Netherlands Heart Foundation, AstraZeneca, BMS, Novo Nordisk, Pfizer